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After reviewing the concept of vison excitations in Z2 dimer liquids, we study the liquid-crystal transition of
the quantum dimer model on the triangular lattice by means of a semiclassical spin-wave approximation to the
dispersion of visons in the context of a “soft-dimer” version of the model. This approach captures some
important qualitative features of the transition: continuous nature of the transition, linear dispersion at the
critical point, and �12��12 symmetry-breaking pattern. In a second part, we present a variational calculation
of the vison dispersion relation at the Rokhsar-Kivelson �RK� point, which reproduces the qualitative shape of
the dispersion relation and the order of magnitude of the gap. This approach provides a simple but reliable
approximation of the vison wave functions at the RK point.
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I. INTRODUCTION

Since they have been shown to possess resonating valence
bond �RVB� phases on the triangular,1 kagome,2 and other
�nonbipartite� lattices,3 quantum dimer models �QDMs� have
been one of the main paradigms in the field of quantum spin
liquids. These models, where the Hilbert space is spanned by
hard-core dimer coverings of the lattice, are expected to cap-
ture the phenomenology of quantum antiferromagnets where
the wave function is dominated by short-range valence bond
configurations. On the triangular lattice, the simplest QDM is
defined by the Hamiltonian:
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where the sum runs over all plaquettes �rhombi� including
the three possible orientations. The kinetic term, controlled
by t, flips the two dimers on every flippable plaquette, i.e., on
every plaquette with two parallel dimers, while the potential
term controlled by the interaction V describes a repulsion
�V�0� or an attraction �V�0� between nearest-neighbor
dimers.

The RVB phase is now relatively well understood. The
first result goes back to Rokhsar and Kivelson,4 who showed
that, for V / t=1 �the Rokhsar-Kivelson or RK point�, the
ground state is the sum of all configurations with equal am-
plitudes:

�RK� =
1

�N�
c

�c� . �2�

Since then, dimer-dimer correlations have been shown to be
short ranged in a range of parameters below V / t=1,1,5 and
the excitation spectrum to be gapped.1,6–8 Besides, it has to-
pologically degenerate ground states on non-simply-
connected clusters.1,5,7 This degeneracy is not related to a

standard symmetry breaking. Indeed, there is no local order
parameter,5,9 but only Z2 topological order.10

In QDM, the nature of the phase transition from a liquid
to a solid is a long standing problem. It goes back to Jalabert
and Sachdev11 �see also Ref. 12�, who studied a three-
dimensional frustrated Ising model related to the square lat-
tice QDM.

In a more general context, Senthil and Fisher13,14 showed
that models of Mott insulators can be cast in the form of a Z2
gauge theory. In this language, the transitions from a frac-
tionalized insulator to a conventionally ordered insulator ap-
pears to be a condensation of Z2 vortices �dubbed visons�.
Using a duality relation,15 they showed that such transitions
correspond to an ordering transition in a frustrated Ising
model in transverse field. As we will see, this applies to the
present QDM.

Building on a mapping between QDM’s at V=0 and Ising
models in a transverse field, Moessner et al.16,17 have devel-
oped a Landau-Ginzburg approach and suggested that the
transition could be continuous and in the three-dimensional
O�4� universality class.

Numerical evidence in favor of this scenario has been
obtained with Green’s function quantum Monte Carlo by
Ralko et al., who have shown that, at the transition point, the
static form factor of the crystal decreases to zero on the
crystal side of the transition, while the dimer gap also de-
creases to zero on the liquid side.18 More recently, the vison
spectrum has also been numerically determined using
Green’s function quantum Monte Carlo, with the conclusion
that a soft mode, indeed, develops at the transition.19

In spite of these results, a simple picture for the wave
functions of the visons and the evolution of their spectrum is
still missing. One difficulty is that, like any vortex, these
excitations cannot be created by operators which are local �in
the dimer variables�. To attack this problem, we follow two
strategies. First of all, we look at the problem in the context
of a Z2 gauge theory on the triangular lattice. As usual, this
theory can be mapped onto a dual Ising model.15 The duality
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transforms the nonlocal excitations of the gauge theory into
local excitations, which we study using a semiclassical ap-
proach. This simple 1 /S expansion already captures most
aspects of the confinement-deconfinement transition �soft
mode and condensation� of the Z2 gauge theory. Second,
building on the explicit form of the excitations of the Z2
gauge theory, we construct single vison wave functions for
the QDM and study the properties of the system at the RK
point in the variational Hilbert space spanned by these states.
These “variational visons”—living on the triangular
plaquettes and experiencing a flux � emanating from each
site of the lattice—turn out to be linearly independent. The
associated dispersion is in good qualitative agreement with
that obtained in Monte Carlo simulations, and the value of
the gap at the RK point ��var=0.119�, obtained with a single
variational parameter, has the correct order of magnitude
�Monte Carlo simulations6 give 0.089�. Improving quantita-
tively further these variational results would require more
adjustable parameters to account in more details for the local
�dimer-dimer, etc.� correlations in the vicinity of the core of
the vortex, a task which has not been carried out here.

II. VISONS IN Z2 GAUGE THEORY

The connection between QDMs and Z2 gauge theories has
already been discussed from different perspectives �see, in
particular, Refs. 2, 3, 12, and 20�, and is rooted in the exis-
tence, in both families of models, of Ising-like degrees of
freedom subjected to local constraints �hard-core constraints
for the dimers, Gauss law for the gauge theory�.

In this section, we review two known mappings: �i� from
a Z2 lattice gauge theory on the hexagonal lattice to the tri-
angular lattice QDM �valid in a particular limit, Sec. II A�
and �ii� from the Z2 theory to its dual frustrated Ising model
�Sec. II B�. The latter Ising model is then studied using a
semiclassical approximation in Secs. II B 2 and II B 3. Since
the Z2 gauge theory-QDM mapping is formally justified only
in the confined phase of the gauge theory, the relevance of
the results obtained in the RVB �deconfined� phase of the
QDM is not guaranteed a priori. Some reasons why this is
expected to be the case are discussed in the next section,
when we build on the results obtained for the excitations of
the Z2 gauge theory in its deconfined phase to construct el-
ementary excitations in the RVB phase of the QDM.

A. Z2 gauge theory

To write down a Z2 gauge theory analogous to a QDM,
the starting point is to define Pauli matrices ��l on the bonds l
of the triangular lattice such that �l

x=−1 if bond l is occupied
by a dimer, and +1 if it is empty, while �l

z changes the state
of bond l. Since each kinetic term of the QDM flips the
dimers around a rhombus, it corresponds to a product of four
�l

z around this rhombus. This would, however, not keep the
structure of the simple Z2 gauge theories, in which the ki-
netic term acts on an elementary plaquette of the lattice, a
crucial ingredient to get a simple Ising model by duality.15

An alternative is to consider the more standard Z2 gauge
theory which, in its Hamiltonian formulation, is defined by

H = HJ + H	 = − J�
l

�l
x − 	�

i
�
l�i�

�l�i�
z , �3�

where i runs over the sites of the dual honeycomb lattice, and
l�i� are the three bonds forming the triangular plaquette
around site i �see Fig. 1�. The hallmark of this model is to
have local conserved quantities. Indeed,

�H,�
l	a


�l	a

x � = 0, �4�

where a is a site of the triangular lattice, and the product over
l	a
 runs over the six links emanating from a �see Fig. 1�.
This allows one to define different sectors according to
whether �l	a
�	a


x is equal to +1 or −1. Since in the QDM the
number of dimers emanating from a given site is exactly
equal to 1, it is clearly better to consider the sector where

�
l	a


�l	a

x = − 1 �5�

for all a since this forces the number of dimers emanating
from a site to be odd �defining an odd Ising gauge theory in
the terminology of Ref. 20�. Then, the true constraint is re-
covered in the limit 	 /J→0 if J�0 since, in the ground
state, the number of dimers is then minimal. A bona fide
QDM is then recovered if H	 is treated with degenerate per-
turbation theory. Since H	 changes the number of dimers, its
effect vanishes to first order. To second order, however, one
recovers exactly the QDM of Eq. �1� with V=0 and t
=	2 /J. So, if J /	
1, the Z2 gauge theory maps onto the
QDM at V / t=0. At finite J /	, the model can be viewed as a
“soft-dimer” model, where one, three, or five dimers may
touch a given site.

As we shall see below, the limit J /	
1 lies deep inside
the confined phase of the gauge theory, and from previous
work on the QDM, it is known that at V / t=0, the model is in
a valence bond crystal phase. It would, of course, be very
interesting to connect the two models away from this limit,
when the gauge theory is in its deconfined phase and the
QDM is in the dimer liquid phase. An interesting step in this

a

1)

2) l[a]

3) l<i

l(i) i

i

FIG. 1. �Color online� Some useful definitions of sets of bonds:
�1� l�i� is the set of the three bonds forming the edges of the
plaquette i. �2� l	a
 is the set of the six �fat� bonds emanating from
the triangular site a. �3� l� i denotes the bonds forming a “zigzag”
string extending �to the left� from the triangular plaquette i to an
edge of the lattice.
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direction is provided by higher order perturbation theory. In-
deed, to fourth order in 	 /J, a repulsion between dimers V
=	4 /2J3 is generated. However, other terms of the same or-
der, involving dimer shifts along loops of length 6, are also
generated �see Appendix A�. So, a rigorous mapping does
not extend beyond the V / t=0 point.

B. Dual Ising model

As usual, this Z2 gauge theory is best analyzed by map-
ping it onto a dual Ising model in a transverse field.

1. Model

This can be achieved by introducing spin-1
2 operators �� i

on the dual honeycomb lattice:

�i
x = �

l�i�
�l�i�

z , �i
z = �

l�i

�l
x, �6�

where l� i represents all bonds cutting a straight path �say,
horizontal, see Fig. 2 or 1� starting at i �we implicitly assume
a finite lattice with open boundary conditions�. Combined
with the constraint, this definition implies that

�i
z� j

z = Mij�l
x �7�

for two neighboring sites i , j separated by the bond l. Mij
= �1 is such that each hexagon has exactly one Mij =−1
bond �see Fig. 3�. In terms of these spin operators, the
Hamiltonian is the fully frustrated Ising model21 �FFIM� dis-
cussed by Moessner and Sondhi:17,26

H = HJ + H	 = − J�
�i,j�

Mij�i
z� j

z − 	�
i

�i
x. �8�

Note that choosing other paths to define �i
z leads to other

signs for Mij, which, however, are always such that an odd
number of minus signs appear around each hexagon, leading
to the same Ising model up to a gauge transformation. The
present choice leads to the smallest unit cell �four honey-
comb sites�.

In the following, we study the phase diagram and the
excitations of this model within a semiclassical �large S� ap-
proximation.

2. Classical phase diagram

First, we determine the classical ground state of the model
as a function of 	 /J. To this end, we replace the spin-1

2
operators by classical three-component vectors of unit
length. Since the y component does not appear in the Hamil-
tonian, it is clear that in the ground state, the magnetization
must lie in the x-z plane. To find the lowest energy solution,
we use the following parametrization:

�i
z → 
�i� , �9�

�i
x → �1 − 
�i�2, �10�

with �
�i���1. The corresponding energy is

E = −
J

2�
ij

Mij
�i�
�j� − 	�
i

�1 − 
�i�2. �11�

Initially defined for nearest neighbors 	Eq. �7�
, the coef-
ficients Mij have been upgraded to a matrix M by setting all
other elements to 0. This matrix describes the motion of a
particle on a honeycomb lattice with four sites per unit cell
and a flux � per hexagonal plaquette. It reduces to a 4�4
matrix after Fourier transformation. The eigenvalues associ-
ated with the momentum k= �kx ,ky� are17

mk
1,2,3,4

= � �3 � �2	3 + cos�2kx� − cos�kx + ky� + cos�kx − ky�
 .

Likewise, we denote by 
 the column vector of components


i�.

	 /J��6. For 	
J, we expect the 
�i�’s to be small �or
zero�. We can, therefore, expand Eq. �11� to quadratic order:

E = −
J

2

tM
 +

1

2
	
t
 . �12�

The largest eigenvalue of M being �6, we find that, as long
as 	 /J��6, the energy is minimized by 
=0 and all spins
point in the x direction.

0�	 /J��6. At 	 /J=�6, all the real eigenvectors of M
for the eigenvalue �6 �satisfying �
i��1� minimize Eq. �12�.

ijΩ

j

i

FIG. 2. �Color online� Dashed lines: Horizontal paths used in
Eq. �6� connecting the boundary of the system to triangles i and j.
Dotted segment: Path �ij. In this example, �ij crosses one dimer of
the reference configuration c0 �ellipses� and, therefore, �ij =−1 	Eq.
�47�
.

4

1

2

3 y x

FIG. 3. �Color online� The fat �green� bonds of the hexagonal
lattice �crossed by a dimer of the reference configuration on the
triangular lattice� have Mij =−1, the other bonds have Mij =1. The
four sites of the unit cell �small blue triangles� are labeled from 1 to
4, and the Bravais vectors are x and y.
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Let us choose four complex vectors which form a basis of
the subspace associated with the eigenvalue �6: �Ref. 17�

v1�x,y� = v3
* = �

e5i�/12/F
e−i�/6/F

1

e−i�/12
�exp� i�

6
x + i

�

2
y� ,

v2�x,y� = v4
* = �

ei�/12

e−5i�/6

1/F
e−5i�/12/F

�exp�i
5�

6
x + i

�

2
y� ,

F = 2 sin�5�/12� , �13�

where the four entries of the vector refer to the four sites in
the unit cell �numbered as in Fig. 3� and x ,y are the �Bravais�
coordinates of the unit cell. These eigenvectors correspond to
the four points labeled B in the rectangular Brillouin zone of
Fig. 6.

The most general real eigenvector 
 can be parametrized
by three angles �1, �2, and � and a normalization factor �:


�i� = �	cos���R„v1�i�ei�1
… + sin���R„v2�i�ei�2

…
 .

�14�

To find the ground state, the energy has to be minimized as a
function of these three parameters. The analysis is made
easier when one realizes that the second and fourth moments
of the spin deviations are independent of the three angles.
Indeed,

1

N
�

i


�i�2 = r2�2, �15�

1

N
�

i


�i�4 = 2r4�4, �16�

with

r2 =
1

4
�1 +

1

F2� . �17�

Replacing 
 by Eq. �14� in the expression for the energy 	Eq.
�11�
, we get up to order �4:

E

N
= − 	 +

1

2
�	 − J�6�r2�2 +

1

4
	r4�4 + O��6� . �18�

Minimizing with respect to �2 gives

�2 =
J�6 − 	

f2	
. �19�

For 	�J�6, the energy is minimized for �=0. For 	�J�6,
we have to expand Eq. �11� to the sixth order to find the
angles �1, �2, and � which minimize the classical energy.
Indeed, Eq. �18� shows that, up to order �4, the energy is
independent of the three angles. At this order, the energy is
constant and minimum on a three-dimensional sphere, a con-

sequence of the O�4� symmetry discovered by Moessner and
Sondhi.17 One, therefore, has to go to the next order to find
the actual minima. At sixth order in �, the energy is mini-
mized when

1

N
�

i


�i�6 �20�

is minimum. A numerical investigation shows that the solu-
tions �for 	 /J close to but below �6� are 48-fold degenerate
and can be deduced from each other by symmetry operations
�12 translations and 4 point-group operations�. This confirms
the result obtained previously on symmetry grounds.16,17

Motivated by the FFIM–dimer model correspondence, we
are interested in the average “dimer density:”

dij =
1

2
�1 − Mij��i

z� j
z�� �21�

for all pairs �i , j� of nearest-neighbor honeycomb sites. In the
classical limit, this may be approximated by

dij =
1

2
	1 − Mij
�i�
�j�
 , �22�

where 
 	Eq. �14�
 is the classical ground state. Close to the
transition at 	c=J�6, 
 scales as ���	c−	 	Eq. �19�
 and
the dimer density, thus, shows small deviations about 1

2 . To
visualize the “dimerization” pattern in the vicinity of 	c, the
appropriate quantity is, therefore, a relative rescaled “dimer”
density defined by Dij =

1
�2 �dij −

1
2 �, and plotted in Fig. 4 for

one of the 48 ground states. The obtained pattern is highly
reminiscent of the �12��12 valence bond crystal �VBC�
observed in the triangular lattice QDM. In particular, the 48
spin configurations give only 12 different dimer patterns,
with a smaller unit cell containing 12 sites of the triangular
lattice. It is also interesting to notice that 
�i� vanishes in the
triangles located inside the large diamonds �marked with a

FIG. 4. �Color online� Plot of the rescaled relative dimer density
Dij in one of the 48 classical ground states of the FFIM in trans-
verse field, for a transverse field 	 just below 	c. Thin red bonds
represent Dij =0 �corresponding to the highest dimer density dij

=0.5�. Blue bonds are for Dij �0, that is, a lower dimer density,
with a width proportional to �Dij�. Dij takes only four different val-
ues: 0, −0.259, −0.518, and −0.776.
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dot in Fig. 4�. From Eq. �10�, the corresponding sites have a
magnetization pointing exactly in the x direction, which
means a total absence of vison and local correlations identi-
cal to that of the J=0 paramagnetic ground state. The dimer
density dij is uniform inside these diamonds, in qualitative
agreement with the intriguing observation made in Ref. 18.

3. Semiclassical analysis for � ÕJÐ�6

If J=0, the ground state is the fully polarized state �i
x

=1. The first �degenerate� excited state is obtained by flip-
ping one spin at some arbitrary triangle. To first order in J /	,
the spectrum is obtained by diagonalizing the perturbation
HJ in this subspace. This amounts to diagonalizing M, and
leads to the eigenvalues �k

i =2	+Jmk
i , a result already ob-

tained previously.17

To go further, beyond the limit J /	�1, we perform a 1 /S
semiclassical expansion. We generalize the spin-1 /2 Hamil-
tonian to an arbitrary value S of the spin:

H = −
J

S2 �
�i,j�

MijSi
zSj

z −
	

S
�

i

Si
x �23�

	which reduces to Eq. �8� when S=1 /2
. Spin deviations
away from the x directions are represented using Holstein-
Primakoff bosons. To leading order in 1/S:

Si
z =

1

2
�2S�bi

† + bi� , �24�

Si
x = S − bi

†bi. �25�

One truncates the Hamiltonian to quadratic order in bi, and
diagonalizes it through a Bogoliubov transformation:

bi
† = �

j

Uijaj
† + �

j

Vijaj . �26�

For the aj
† operators to be bosonic creation operators, the

matrices U and V must satisfy U†U−V†V=1. It is convenient
to introduce a unitary matrix � which transforms M into a

diagonal matrix M̃:

M = �M̃�†, �27�

M̃kp = mk�kp. �28�

In this new basis, we can look for diagonal solutions for U
and V:

U = �Ũ�†, V = �Ṽ�†, �29�

Ũkp = uk�kp, Ṽkp = vk�kp. �30�

Since M is real, we can choose ��O�N�. After some alge-
bra, one finds that the uk and vk which diagonalize H are
given by

uk = cosh��k� , �31�

vk = sinh��k� , �32�

tanh�2�k� = −
mk

mk + 2	/J
. �33�

The energies of the Bogoliubov excitations are given by

�k =
J

S
�	

J
�mk +

	

J
� . �34�

As expected, the spectrum becomes gapless at 	 /J=�6 and
we recover the localized spin flip energy �k�	 /S when 	
→�. The Bogoliubov spectrum is shown Fig. 5 for a few
values of 	 at or above 	c. One clearly sees that the disper-
sion is linear around the gapless points at the transition.

This behavior is remarkably similar to that found numeri-
cally by Ralko et al.19 for the QDM by Green’s function
quantum Monte Carlo. In the next section, we build on this
resemblance to develop a variational approach to the vison
spectrum of the QDM. Note that, as stated above, the Z2
gauge theory and the QDM can only be rigorously mapped
onto each other deep into the confined �VBC� phase, and the
resemblance between their spectra in the deconfined �RVB�
phases might seem fortuitous. A somewhat deeper connec-
tion will be described in the next section.

BBBB
0000

4444

A CA CA CA C

3333

ε(κ)ε(κ)ε(κ)ε(κ)

1111

AAAA

2222

FIG. 5. �Color online� Spin-wave dispersion relation S�k /J 	Eq.
�34�
 for the path A→B→C→A in the Brillouin zone �see Fig. 6�
and different values of 	 /J: 3 �top�, 2.75, 2.5, and �6�2.448 �bot-
tom�. At the critical point 	 /J=�6, the spectrum is linear around
k= �� /6,� /2� and k= �5� /6,� /2�.

A
B
C

kx

ky

FIG. 6. �Color online� Dashed rectangle: Brillouin zone �−�
�kx�� and −��ky ��� of the hexagonal lattice shown in Fig. 3.
A, B, and C are the high-symmetry points used in Fig. 5. The large
hexagon is the Brillouin zone of the underlying triangular lattice.
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III. VISONS IN THE QUANTUM DIMER MODEL

In the Ising model, elementary excitations for large
enough 	 /J are spin flips, induced by �i

z, which delocalize
and get dressed under the effect of HJ. In the equivalent dual
gauge theory, this excitation is produced by the nonlocal
string operator �i

z=�l�i�l
x. By analogy, it is natural to define

a “point” vison creation operator for the QDM by5,22

Vi = �− 1�N̂�i�, N̂�i� = �
l�i

n̂l, �35�

where the dimer operator n̂l is defined by n̂l=1 if bond l is
occupied, and 0 otherwise. Again, we consider here a finite
lattice with open boundary conditions. Let us first see to
which extent this operator is the analog of the vortex creation
operator in Ising gauge theories.

A. Z2 gauge structure of quantum dimer models

In gauge theories, the Wilson loop operator defined by

W�� = �
l���

�l
z �36�

plays a central role since it allows one to distinguish �in the
absence of matter field, as here� the deconfined and confined
phases depending on whether its ground state expectation
value �or flux� tends to zero exponentially with the perimeter
of the domain � �deconfined� or with the area of the domain
�confined�. For a Z2 gauge theory, W��

2 =1 and the flux going
through � measured by W�� can only take two values �1. In
that respect, an interesting property of the operator �i

z

=�l�i�l
x is that it changes the flux between −1 and +1 if the

site i is inside the domain. Then, �i
z� j

z commutes with the
Wilson loop and does not change the flux unless i and j sit on
opposite sides of the boundary. Since the deconfined phase
can be accessed from the J�	 limit, the ground state can be
thought of as an Ising paramagnet ��x=1 and W��=1 every-
where� “dressed” perturbatively by successive applications
of J�i

z� j
z, where i and j are nearest neighbors. Since J�i

z� j
z

only changes the flux for pairs ij across the boundary, the
expectation value of the Wilson loop operator behaves ac-
cording to a perimeter law. A similar perturbative argument
can be used to derive the area law in the confined phase.

Most of these standard Z2 gauge theory results apply to
the QDM, with one difficulty however. The Wilson loop op-
erator cannot be defined in the same way since flipping the
dimer occupation along a loop will often lead to an unphysi-
cal state that violates the condition of having exactly one
dimer emanating from each site. Different ways to overcome
this problem can be envisaged. One possibility is to accept
that the Wilson loop operator gives zero when applied to
states that are nonflippable along the loop. The property
W��

2 =1 is lost, but W�� has eigenvalues 0, +1, or −1, and
eigenstates with eigenvalues +1 or −1 are still interchanged
when a vison operator 	Eq. �35�
 is applied inside the do-
main. So confinement or deconfinement of visons is still ex-
pected to lead to area or perimeter laws.

Alternatively, starting from the observation that, when it
does not give zero, the Wilson loop operator just shifts the

dimers along the contour, one can try to define a �compli-
cated� flux operator in the dimer space which shifts the dimer
along a “fattened” contour which “adapts” locally to the
dimer configuration it acts upon. Although tricky to define in
practice,27 this operator would have the advantage that its
square is still equal to 1, preserving the manifest Z2 structure
of the theory.

Another way to underline the deep connection between
the two models is to consider the Ising model as a soft-dimer
model and introduce the projection operator onto the hard-
core dimer Hilbert space, defined by

P̂ = �
p

�n̂p − 3��n̂p − 5�
�1 − 3��1 − 5�

, �37�

where the operator n̂p counts the number of frustrated bonds
�dimers� around the plaquette p:

n̂p =
1

2�
i=1

6

�1 − Mi,i+1�i
z�i+1

z � . �38�

By construction, P̂=1 on all the Ising configurations, which
correspond to a valid hard-core dimer covering �of the trian-

gular lattice� and P̂=0 otherwise. Now, P̂ commutes with

�i�i
x since all terms in P̂ contain an even number of �z

operators. This means that P̂ conserves the total flux, so that
a spin state with −1 flux becomes a dimer wave-function
with an odd number of visons after projection.

B. Point vison

Equation �35� defines the simplest operator which
changes the flux, that is, which creates a vison. So we may
consider

�i� = V�i��RK� =
1

�N�
c

�− 1�N̂�i��c� �39a�

=
1

�N
P̂�i

z�
� j
x = + 1�� �39b�

as a first variational approximation to the true lowest eigen-
state of H in the −1 flux sector �N is the total number of
dimer coverings�. The ground state �RK� is a zero-energy
eigenstate of H, implying that the expectation value EK�0
of the kinetic energy term exactly compensates the expecta-
tion value EP�0 of the potential energy term. Indeed,

EP = 3Np0 = − EK, �40�

where 3N is the total number of rhombi �N the number of
sites� and p0 the probability to have two parallel dimers on a
given rhombus in the classical dimer problem �with uniform
measure over all dimer configurations�. Using the Pfaffians
method,23,24 one finds in the thermodynamic limit

p0 � 0.093 331 0104 . . . . �41�
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In �i� the expectation value of the potential energy term is
the same as in �RK�. In fact, all the observables which are
diagonal in the dimer basis commute with �z and, thus, have
the same expectation value in the ground state �RK� and in
the trial wave function �i�. The increase of the energy is only
kinetic. Because the kinetic terms corresponding to the three
diamonds around i anticommute with �i

z, their expectation
values have changed sign. Thus, we find

�i�H�i� − �RK�H�RK� = 6p0 � 0.56. �42�

C. Dispersing point vison

One can lower the energy by constructing plane waves. To
compute the associated dispersion relation we have to evalu-
ate the following matrix elements:

Sij
0 = �i�j� , �43�

Hij
0 = �i�H�j� . �44�

We begin with the overlap matrix

Sij
0 =

1

N�
c

�c��− 1�N̂�i�+N̂�j��c� �45�

	N̂�i� and N̂�j� are defined in Eq. �35�
 which simplifies to

Sij
0 = �ij

1

N�
c

�c��− 1�N̂�i,j��c� , �46�

�ij = �− 1�N0�i,j�, �47�

where the local operator N̂�i , j� counts the number of dimers
across some path �ij connecting the triangles i and j
�see Fig. 2�, and N0�i , j� is equal to that number in the refer-
ence configuration c0, chosen with all the dimers horizontal
�Fig. 2�. This follows from two simple properties:

�c � �−1�N̂�i�+N̂�j�+N̂�i,j� �c� is independent of the configuration c,

and �c0 � �−1�N̂�i�+N̂�j� �c0�=1. We finally write

Sij
0 = �ij��− 1�N̂�i,j�� , �48�

where �¯� represents the average with equal weight over all
dimer coverings.

The average of any such diagonal observable can be com-
puted using the Pfaffian of a �modified� Kasteleyn
matrix.23,24 In the present case, the “string” observable

�−1�N̂�i,j� is coded in the Kasteleyn matrix by changing the
signs of the matrix elements corresponding to bonds crossed
by �ij, i.e., setting some bond fugacities to −1. To evaluate
numerically such an expectation value, we construct the
modified Kasteleyn matrices corresponding to a large enough
triangular lattice, in which the path �ij is embedded. Finite-
size effects decay exponentially with the system size, so that
lattices with 28�28 sites �with periodic boundary condi-
tions� can safely be used to evaluate Sij

0 with high accuracy
up to distances d�10 between triangles i and j.

The matrix elements Sij
0 , plotted in Fig. 7 as a function of

the distance between i and j, decay exponentially �a result
anticipated by Read and Chakraborty22�. These quantities
have already been evaluated by Ioselevich et al.5 using a
classical Monte Carlo sampling.

By construction, a product like �i1,i2
�i2,i3

¯�in,i1
�where

i1 , i2 , . . . , in form a closed loop of triangles� is equal to the
parity of the number of sites enclosed in the loop. Thus, the
signs of the matrix elements Sij

0 are similar to those of the
hopping amplitude of a particle moving on the hexagonal
lattice and subjected to a magnetic field corresponding to
half a flux quantum per hexagon.28 In such a case, the mag-
netic unit cell has to be doubled compared to the original
lattice cell. Since the original unit cell contains one triangu-
lar site and two triangular plaquettes, the magnetic one con-
tains four triangular plaquettes and, thus, four sites of the
hexagonal lattice. In Fourier space, S0�k� is a 4�4 matrix, as
the matrix M discussed previously. The same is also true for
the Hamiltonian matrix elements described below.

The spectrum of the overlap matrix S0�k� is plotted in Fig.
8 �for k describing a representative path in the Brillouin
zone�. As an important result, the eigenvalues are strictly
positive for all k.

Let us now turn to the matrix elements of the Hamil-
tonian. We wish to transform Eq. �44� into an expression
which can be evaluated using the Pfaffians, that is, the ex-
pectation value of a diagonal observable in the dimer basis.
First, we write H as a sum of projectors

H = 2�
r0

�̂r0
, �49�

FIG. 7. �Color online� Overlap ��i � j�� between two point-vison
states 	defined in Eq. �39a�
 as a function the distance dij between i
and j. The �blue� squares correspond to Eq. �43� and the three �red�
crosses correspond to Eq. �59� with �=−0.8. The calculations are
done using an exact evaluation of the Pfaffians on a 28-site lattice
with periodic boundary conditions. Dashed line: guide for the eye
corresponding to an exponential decay with the dimer-dimer corre-
lation length �−1=0.76 �Ref. 5�.
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�̂r0
= ��r0

���r0
� , �50�

|ψr0� =
1√
2

���
� �

� �
� − �

�
� �

� �

��

��

�51�

and expand Eq. �44� into

Hij
0 =

2

N �
c1,c2

�
r0

�− 1�N�c1,i�+N�c2,j��c1��̂r0
�c2� , �52�

with the notation N�c , i�= �c � N̂�i� �c�= �1. Because of the
double sum �c1,c2

, this does not yet have the form of a diag-
onal observable amenable to an evaluation with Pfaffians. To

go further, we note that �c1 ��̂r0
�c2� vanishes if c1 and/or c2 is

not flippable around the rhombus r0. In addition,

�c1 ��̂r0
�c2�=0 if c1 and c2 differ anywhere outside r0. So we

can restrict the sum to pairs of configurations �c , c̄�, which
differ by a dimer flip in r0 and which are identical elsewhere
on the lattice:

Hij
0 =

2

N�
r0

�
�c,c̄�

Fr0
�c�=1

	�− 1�N�c,i��c� + �− 1�N�c̄,i��c̄�
�̂r0
	�− 1�N�c,j�

��c� + �− 1�N�c̄,j��c̄�
 , �53�

where Fr0
�c�=1 if c is flippable on rhombus r0, and Fr0

�c�
=0 otherwise.

c and c̄ only differ inside r0, so the signs �−1�N�c,i� and
�−1�N�c̄,i� are the same if i is not inside r0, and are opposite if
i�r0. Let us note �i,r0

=−1 if i�r0, and �i,r0
=1 otherwise.

This leads to

Hij
0 =

2

N�
r0

�
�c,c̄�

Fr0
�c�=1

�− 1�N�c,i�+N�c,j�	�c� + �i,r0
�c̄�
�̂r0

	�c�

+ � j,r0
�c̄�
 . �54�

Using the explicit form of �̂r0
, we get

	�c� + �i,r0
�c̄�
�̂r0

	�c� + � j,r0
�c̄�
 =

1

2
�1 − �i,r0

��1 − � j,r0
�

�55�

and, finally,

Hij
0 = �

r0

�1 − �i,r0
��1 − � j,r0

�
1

2N �
c

Fr0
�c�=1

�− 1�N�c,i�+N�c,j�

�56a�

=�ij�
r0

�1 − �i,r0
��1 − � j,r0

�
1

2N �
c

Fr0
�c�=1

�c��− 1�N̂�i,j��c� .

�56b�

The last expression is the average of a diagonal observable
and can, thus, be evaluated using Pfaffians:

Hij
0 =

1

2
�ij�

r0

�1 − �i,r0
��1 − � j,r0

���− 1�N̂�i,j�F̂r0
� , �57�

where we used an operator notation for the “flippability”

F̂r0
�c�=Fr0

�c��c�. To get a nonzero contribution, there must
be at least one rhombus r0 containing i and j. So Hij

0 =0 if i
and j are not nearest neighbors. Using modified Kasteleyn
matrices in a way similar to that described for the overlap
matrix S0, the nonzero matrix elements can be calculated. We
find �Hij

0 �=6p0 for i= j; �Hij
0 �=2p0 when i and j are first neigh-

bors.
Although the matrix elements of H are simple, the band

structure is, however, not that of a simple tight-binding
Hamiltonian, because of the nonorthogonality of the present
variational vison states. In Fourier space, S0�k� and H0�k� are
4�4 matrices. The spectrum is obtained by solving the gen-
eralized eigenvalue problem H0�k��k−E�k�S0�k��k=0. The
results are shown in Fig. 9 ��=0 curve�. The minimum of �k
is found at �kx ,ky�= �� /6,� /2�, in agreement with the Monte

FIG. 8. �Color online� Spectrum of the overlap matrix S��k�
	Eqs. �43� and �59�
, for different values of � �0, −0.2, −0.5, and
−0.8�, along the path A→B→C→A in the Brillouin zone �see Fig.
6�. The bottom panel is a zoom on the lowest eigenvalues of S�. In
these calculations, the matrix elements Sij

� are neglected for tri-
angles i and j at distance d�dmax=10 �102th neighbor on the hex-
agonal lattice�. Up to this distance, the finite-size lattice used in the
calculation �28�28 sites� gives practically the infinite volume limit
for Sij

�. The value of dmax used here is large enough to ensure a good
convergence of the spectrum since the curves obtained with a
smaller truncation distance �dmax�8.47—shown here with the same
colors� are almost superposed with that for dmax=10, except for the
bottom of the spectrum at �=−0.5 and �=−0.8. The overlap spec-
trum turns out to be gapped for �=0 and �=−0.2 �and probably at
�=−0.5 and �=−0.8 too�, indicating the linear independence of the
vison states.
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Carlo results.6,18 The corresponding energy is �min=0.16,
which is significantly lower than the energy �0.56� found
above for a completely localized point vison �i�. The bottom
of this variational point-vison band is, however, still high
compared to Ivanov’s6 estimate �0.089� of the gap in the
vison sector. The next section provides an improved family
of variational states.

D. Dressed vison

The vison wave function of Eq. �39a� differs from the RK
wave functions only through minus signs. It has the “acci-
dental” property that dimer-dimer correlations are the same
as in the ground state.29 As a consequence, the excitation
energy of such a state is carried only by the kinetic part of
the Hamiltonian. Clearly, some local reweighting of the
dimer configurations in the vicinity of the vortex core would
allow an optimized balance between the potential and kinetic
costs of the excitation, and would lead to an improved varia-
tional wave function. This amounts to “dressing” locally the
initial point-vison state by some even—but fluctuating—
number of additional point visons.

As a simple improvement of the vison wave function, we
introduce a variational parameter � to reweight the configu-
rations depending on their flippability at the core of the vi-
son. This gives the following vison state:

�i,�� =
1

�N�
c

�− 1�N̂�i��1 + �F̂i��c� ,

F̂i = F̂r1�i� + F̂r2�i� + F̂r3�i�, �58�

where F̂i�c�= �c� if the dimer configuration c is flippable
around one of the three rhombi r1�i�, r2�i�, and r3�i� contain-

ing the triangle i, and F̂i�c�=0 otherwise.
As for the point vison of Eq. �39a�, the vison states of Eq.

�58� are not orthogonal and we have to evaluate their over-
laps:

Sij
� = �i,��j,�� . �59�

Repeating the transformation leading to Eq. �48�, we get

Sij
� = �ij��− 1�N̂�i,j��1 + �F̂i��1 + �F̂j�� , �60�

which is an expectation value for a diagonal operator that we
evaluate using Pfaffians. In addition to the sign changes due

to �−1�N̂�i,j�, some entries of the Kasteleyn matrix have to be

modified to incorporate the flippability operators F̂r. More

precisely, counting only the coverings which satisfy F̂r=1 is
done by “isolating” the rhombus r, that is, by switching to
zero in the Kasteleyn matrix the 14 bonds which connect the
sites of rhombus r to their neighbors outside r.

Beyond some distance between the vison cores i and j
�fourth neighbor on the hexagonal lattice�, no rhombus can
touch simultaneously both triangles. In that case, it can be
shown that Sij

� =Sij
0 is independent of �. The eigenvalues of

the overlap matrix S��k� are displayed in Fig. 8 for a few
selected values of �. Although a full convergence as a func-
tion of the truncation distance dmax �see caption of Fig. 8� has
not been obtained, we believe that there is a finite gap for all
the values of � shown here, and that the dressed vison states
are linearly independent.

The evaluation of the Hamiltonian matrix elements

Hij
� = �i,��H�j,�� �61�

for dressed vison can still be done using Pfaffians, but the
algebraic manipulations are slightly more lengthy than the
previous ones, and we refer the reader to Appendix B. We
find nonzero matrix elements Hij

� up to �and including� the
ninth neighbor �compared to first neighbor for point vison�.

The results for the variational dispersion relation are
shown Fig. 9. The qualitative shape of the lowest band is
almost unchanged compared to the point-vison states ��
=0�, except for an almost uniform shift which lowers the
gap. The minimum of Ek is found at �kx ,ky�= �� /6,� /2�
=B for a variational parameter ��−0.8, and the correspond-
ing energy is Emin=0.119, about 33% higher than the exact
value.

The fact that simple wave functions like those of Eq.
�39a� and �58� reproduce qualitatively the shape of the exact
dispersion relation is presumably due to the fact that the
dimer-dimer correlation length is rather small at the RK
point �of order of one lattice spacing1�. As a consequence,
the exact vison states only differ from Eq. �39a� at short
distances from the vortex core, and the long-distance part
�string�, responsible for the flux � per hexagon, is essentially

FIG. 9. �Color online� Variational vison 	Eq. �58�
 dispersion
relation for different values of �, along the path A→B→C→A in
the Brillouin zone �see Fig. 6�. The curve for �=0 corresponds to
the variational energies of point-vison states 	Eq. �39a�
. The abso-
lute minimum is Emin=0.119, found at �kx ,ky�= �� /6,� /2�=B for a
value �−0.8 of the variational parameter �. The exact value of the
gap �0.089� �Ref. 6� is marked as a dotted horizontal line. In this
calculation, the matrix elements Sij

� are neglected for triangles i and
j at distance d�dmax=10. This value is large enough to ensure a
perfect convergence of the spectrum below E�0.6, as can be
checked from the fact that the dispersion curves obtained with a
smaller truncation distance �dmax�8.47—shown here with the same
colors� are practically identical. Some higher energy states, how-
ever, are not fully converged.
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exact. This is, of course, no longer true away from the RK
point and in the direction of the crystal, where the correlation
length rapidly grows.

In an attempt to extend this variational approximation
away from the RK point, we computed the gap of the dressed
vison states in perturbation theory to first order in �1−V�.
However, at this order, the gap turns out to close very slowly
and does not lead to a meaningful estimate for the critical V
at the liquid-crystal transition. This failure is closely related
to the remark above: the size of the core of the vison pre-
sumably grows rapidly away from the RK point, a feature
which cannot be accounted for with the present variational
states.

IV. CONCLUSIONS

In this paper, we have developed two simple approaches
to describe the vison excitations of the QDM on the triangu-
lar lattice. The first one is based on a soft-dimer version of
the model, which exactly takes the form of a Z2 gauge
theory. We have shown that a semiclassical spin-wave ap-
proximation to the spectrum of the dual Ising theory captures
the important fact that the disappearance of the RVB liquid is
due to a vison condensation.30 It also reproduces the qualita-
tive shape of the vison spectrum in the disordered phase and,
more importantly, at the transition �linear spectrum at the
correct points of the Brillouin zone�, as well as the spatial
pattern of the ordered crystalline state.

The second approach is a variational approximation to the
vison wave functions at the RK point of the �hard-core�
QDM. It reproduces semiquantitatively the vison dispersion
relation, and provides a simple picture for the vison wave
functions which goes beyond the naive point-vison approxi-
mation.

Beyond the problem of vison dispersion and condensa-
tion, we expect these approaches to be useful for other prob-
lems related to vison excitations in QDM, in particular, their
mutual interaction and their interaction with vacancies and
mobile holes. This is left for future investigations.
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APPENDIX A: FOURTH ORDER EFFECTIVE QUANTUM
DIMER MODEL

The goal of this appendix is to derive an effective Hamil-
tonian for the model of Sec. II A defined by the Hamiltonian

H = HJ + H	 = − J�
l

�l
x − 	�

i
�
l�i�

�l�i�
z �A1�

in the limit 	 /J�1 to fourth order in 	 /J. For simplicity, let
us define the unperturbed Hamiltonian H0�HJ and the per-

turbation V�H	. Since the Hilbert space of the model is
restricted by the constraint that the number of dimers starting
from a given site is odd, the ground state manifold of the
unperturbed Hamiltonian for positive J consists of all states
having exactly one dimer emanating from each site. Let us
denote by P0 the projector onto the Hilbert space generated
by these states, and by S the resolvent defined by

S = −
1 − P0

H0 − E0
. �A2�

It is easy to check that V changes the parity of the number of
dimers. Indeed, the term of V acting on the triangle i trans-
forms the states with 0 and 3 �1 and 2� dimers around the
triangle i into each other. This implies that P0VP0=0 and,
more generally, that the effective Hamiltonian only contains
even powers of the perturbation. Thanks to the property
P0VP0=0, the fourth order contribution reduces to three
terms, and the effective Hamiltonian up to fourth order reads

Heff = P0VSVP0 + P0VSVSVSVP0 −
1

2
P0�VS2VP0VSV

+ VSVP0VS2V�P0.

Up to a constant, this effective Hamiltonian can be written as
a QDM acting on four- and six-site plaquettes. The four-site
Hamiltonian has the form of the regular RK model with t
=	2 /J−	4 /J3 and V=	4 /2J3. The six-site Hamiltonian only
consists of kinetic terms that flip the dimers around the three
possible types of six-site plaquettes shown in Fig. 10, with
amplitude −3	4 /4J3 for types �1� and �2�, and with ampli-
tude −	4 /J3 for type �3�.

APPENDIX B: HOPPING AMPLITUDE FOR THE
DRESSED VISONS

For the dressed vison states 	Eq. �58�
, the equivalent of
Eq. �54� is

Hij
� =

2

N�
r0

�
�c,c̄�

Fr0
�c�=1

�− 1�N�c,i�+N�c,j�	�c��1 + �F̂i�

+ �i,r0
�c̄��1 + �F̂i�
�̂r0

	�1 + �F̂j��c� + � j,r0
�1 + �F̂j��c̄�
 .

�B1�

Using the explicit form of the projector �̂r, we get

FIG. 10. The three types of six-site plaquettes around which
dimer shifts are generated at fourth order in 	 /J.
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�i,���̂r0
�j,�� =

1

2N �
�c,c̄�

Fr0
�c�=1

�− 1�N�c,i�+N�c,j�
1 + �Fi�c�

− �i,r0
	1 + �Fi�c̄�
�
1 + �Fj�c� − � j,r0

	1

+ �Fj�c̄�
� . �B2�

Unlike Eq. �56b�, both the coverings c and c̄ enter the
expression. This does not have the form of a diagonal
observable, and the terms Fr�c̄� 	with r� 
r1�i� ,r2�i� ,
r3�i� ,r1�j� ,r2�j� ,r3�j��
 need to be eliminated to allow for an
evaluation with Pfaffians. By inspecting the possible relative
positions of two rhombi r0 and r, one arrives at the following
two relations:

�1� If two rhombi r0 and r have zero, one, three, or four
sites in common, Fr�c̄�=Fr�c� for any pair of configurations
�c , c̄� which differ by a flip around the rhombus r0.

�2� It r0 and r have two sites in common, let us call b the
bond of r which does not touch r0. Then we have Fr�c̄�
=Db�c�	1−Fr�c�
, where Db�c�=1 if b is occupied by a
dimer of c, and 0 otherwise.

We may combine the two cases above into some compact
notation Fr�c̄�=Ar,r0

�c�, valid for any pair of configurations

�c , c̄� which differ by a flip around the rhombus r0. Accord-
ingly, we define an operator Âi,r0

= Âr1�i�,r0
+ Âr2�i�,r0

+ Âr3�i�,r0
for each triangle i and rhombus r0. The matrix element of Eq.
�B1� is now expressed as the expectation value of a diagonal
operator:

Hij
� =

�ij

2 �
r0

��− 1�N̂�i,j�F̂r0
�1 + �F̂i − �i,r0

�1 + �Ai,r0
���1 + �F̂j

− � j,r0
�1 + �Aj,r0

��� . �B3�

This expression has to be expanded into a polynomial in F̂

and D̂ operators before each term can be evaluated thanks to
the Pfaffian of an appropriate Kasteleyn matrix. As before

the �−1�N̂�i,j� introduces some sign changes, and each F̂ �or

D̂� operator requires isolating the corresponding rhombus �or
bond� by switching to zero the corresponding matrix ele-
ments. Several tens of terms typically appear for each pair of
triangles �ij�, and an automated treatment by computer had
to be coded to obtain the hopping amplitudes. The results of
Fig. 9 represent several hundreds of CPU hours using the
software MAPLE to generate all the correlators and evaluate
the corresponding Pfaffians on a finite lattice with 28�28
sites.
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measures the presence �−1� or absence �+1� of a vison, and �z

creates or annihilates a vison 	see Eq. �39b�, for instance
. The
classical ground state turns out to have ��z�=0 in the dimer
liquid phase and ��z��0 in the crystal phase �Sec. II B 2�. So,
the vison creation or annihilation operator acquires a finite ex-
pectation value at the transition, the usual signature of a particle
condensation. This is almost identical to the standard hard-core-
boson ↔ spin-1

2 correspondence. If the particle density is repre-
sented by 1

2 �1−�x� �as here for visons�, magnetic long-range
order in the z �or y� direction �for the spin variables� is equiva-
lent to Bose condensation �off-diagonal long-range order in the
Boson operators�. An important difference is, however, that the
number of visons is not conserved. Only their parity is con-
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served. Accordingly, the vison condensed phase spontaneously
breaks a discrete �Z2� gauge symmetry ��z, which is not gauge
invariant, acquires a finite expectation value in the crystal
phase�, and not a continuous 	U�1�
 one. Consequently, the con-

densed phase is gapped and does not have a Goldstone mode. In
the dimer model, the spectrum is, therefore, gapless only at the
transition.
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